
1
Software and Services Group

1

Mesa's GLSL compiler

Eric Anholt

2
Software and Services Group

2

What is GLSL?

•C-like language operating on vector types

•OpenGL program gives the library a source code string

•GLSL compiler compiles it for the GPU to execute

•Used in vertex shading

• Scale/translate/etc. model data to world space

• Calculate lighting parameters

•Used in fragment shading

• Compute color from interpolated parameters and textures

3
Software and Services Group

3

What does it look like?

uniform vec4 color;

void main()
{

gl_FragColor = color;
}

varying vec2 texcoords;
uniform sampler2D tex;

void main()
{

gl_FragColor = texture2D(tex, texcoords);
}

attribute vec2 in_texcoords;
varying vec2 texcoords;
uniform mat4 mvp

void main()
{

gl_Position = mvp * gl_Vertex;
texcoords = in_texcoords;

}

uniform mat4 mvp

void main()
{

gl_Position = mvp * gl_Vertex;
}

4
Software and Services Group

4

It gets worse

#version 120

uniform vec3 light_eye;
varying vec2 texcoord;
varying vec3 light_surf;
varying vec3 eye_surf;
varying vec3 tangent_surf;
varying vec4 shadow_coords;
uniform mat4 mvp, mv, light_mvp;

void main()
{

mat3 mv3 = mat3(mv);
vec3 t = (mv3 * gl_MultiTexCoord1.xyz);
vec3 n = (mv3 * gl_Normal);

gl_Position = mvp * gl_Vertex;

mat3 tbn = mat3(t,
cross(n, t),
n
);

vec3 vertex_eye = vec3(mv * gl_Vertex);
shadow_coords = light_mvp * gl_Vertex;

texcoord = gl_MultiTexCoord0.xy;
light_surf = normalize((light_eye - vertex_eye) * tbn);
eye_surf = normalize((-vertex_eye) * tbn);
tangent_surf = gl_MultiTexCoord1.xyz * tbn;

}

void main()
{

vec3 l = normalize(light_surf);
vec3 v = normalize(eye_surf);
vec3 h = normalize(l + v);
vec3 t = normalize(tangent_surf);
vec3 n = texture2D(normal_sampler, texcoord).xyz *

2 – 1;
float n_dot_l = dot(n, l);
float n_dot_v = dot(n, v);
float n_dot_h = dot(n, h);
float v_dot_h = dot(v, h);
float cos2_alpha = n_dot_h * n_dot_h;
float tan2_alpha = (1 - cos2_alpha) / cos2_alpha;
float cos_phi = dot(normalize(t.xy),

normalize(h.xy));

float cos2_phi_over_m2 = (cos_phi * cos_phi) *
ward_mm_inv;

float sin2_phi_over_n2 = (1 - cos_phi * cos_phi) *
ward_nn_inv;

D = exp(-tan2_alpha * (cos2_phi_over_m2 +
sin2_phi_over_n2));

Rs = 2 * schlick_fresnel(n_dot_l) * D *
inversesqrt(n_dot_l * n_dot_v) * ward_mn_inv;

Rs *= s;

gl_FragColor = max(0, n_dot_l) *
step(0, n_dot_v) *
vec4(material_color.xyz *
 ((Rd * d + Rs) * Ii * shadow),
 material_color.w);

}

5
Software and Services Group

5

We need a compiler

•Not just parsing into a syntax tree

•We want actual optimization

6
Software and Services Group

6

Why it's easy

•Compiler techniques are extremely well known

•lex, yacc handle some irritating parts

•Programs are short

•No such thing as memory

•No such thing as pointers

7
Software and Services Group

7

Why it's hard

•Most GPUs don't look like CPUs

•vec4 as the basic datatype

•write masks on register destinations

•source swizzles (channel moves, replacement with constants)

•Many GPUs don't have things like “if” or “loop”

8
Software and Services Group

8

Write masks

•Optimization wants to know “where does this value come from?”

•Easy to answer with scalar values: the last thing to write to it

•What is the answer for vectors?

varying vec2 texcoords;
uniform sampler2D tex;

void main()
{

vec4 color = texture2D(tex, texcoords);
color.rgb = mix(color.rgb, vec3(0.633), 0.2);

gl_FragColor = color;
}

9
Software and Services Group

9

There are two answers

•Deciding whether to treat vectors as vectors depends on GPU

• “AOS” is having one register with the whole vec4 in it.

• “SOA” is having 4 registers for a vec4.
reg0 x0 x1 x2 x3

reg1 y0 y1 y2 y3

reg2 z0 z1 z2 z3

reg3 w0 w1 w2 w3

reg0 x0 y0 z0 w0

reg1 x1 y1 z1 w1

reg2 x2 y2 z2 w2

reg3 x3 y3 z3 w3

10
Software and Services Group

10

SOA vs AOS

•965 vertex is AOS

•965 fragment is SOA

•915 is AOS

•r200 is AOS

•r300/r500 is AOS

•r700 is AOS

•nv40 is AOS

•nv50 is SOA

•nvc is SOA

11
Software and Services Group

11

GPU limitations: Flow control

•GPUs don't do arbitrary flow control

•As of ~6 years ago, GPUs did no flow control

•GLSL requires support for loops and if statements

•Tell the loop unroller to unroll everything

•Replace if..else..endif blocks with conditional moves

12
Software and Services Group

12

GPU limitations: Array access

•Some GPUs just don't do this

•GLSL requires that you do

•Allocate a bunch of registers, do conditional moves

• Does this sound familiar?

13
Software and Services Group

13

GPU limitations: Instruction count

•Old GPUs can often do just a few instructions

• 915: 64 ALU, 32 texturing

• r200 vertex: 128 instructions

• r300 vertex: 256 instructions

• r500 vertex: 1024 instructions

•If we fail at optimizing, it's worse than running slow

14
Software and Services Group

14

GPU limitations: registers and memory

•Until recently, no memory access at all

• 915: 16 temporary registers

• r200 vertex: 12 temporary registers

• r300 vertex: 32 temporary registers

•Register allocation is a big deal

• If you've got no memory access, no spilling allowed

• Even if you have memory access, spilling is expensive

— One shader spilling reduced Lightsmark performance 50% on 965

15
Software and Services Group

15

GLSL advantages

•Not IEEE floats

•Almost no guarantees about your math.

• 1/1/x == x

• 2.0 * x * 0.5 == x

• sin() might be sin(), might be a small-order polynomial.

16
Software and Services Group

16

Conclusion

•New compiler is in place in Mesa 7.9

• i915 got GLSL support

•New native codegen for 965 fragment shader in Mesa 7.10

• nexuiz 20% faster than in Mesa 7.8

•Most programs generate good-looking code

•Still work to do to optimize some programs

•Still need native codegen for other GPUs

•Still need native codegen for the CPU

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

