Mesa's GLSL compiler

Eric Anholt

—= Open Source

| Technology Software and Services Group < i"tEl

» Center

1

What is GLSL?

e C-like language operating on vector types
e OpenGL program gives the library a source code string
o GLSL compiler compiles it for the GPU to execute
e Used in vertex shading
= Scale/translate/etc. model data to world space
= Calculate lighting parameters
eUsed in fragment shading

= Compute color from interpolated parameters and textures

Open Source

Technology Software and Services Group < inter

Center

2

What does it look like?

uniform mat4 mvp attribute vec2 in texcoords;
varying vec2 texcoords;
void main() uniform mat4 mvp
{
gl Position = mvp * gl Vertex; void main()
} {

gl Position = mvp * gl Vertex;
texcoords = in texcoords;

uniform vec4 color; varying vec2 texcoords;
uniform sampler2D tex;
void main()

{ void main()
gl FragColor = color; {
} gl FragColor = texture2D(tex, texcoords);
}

Open Source

3

Teclgggleorgy Software and Services Group < i"tEl

It gets worse

#version 120 void main()
{
uniform vec3 light eye; vec3 1 = normalize(light surf);
varying vec2 texcoord; vec3 v = normalize(eye surf);
varying vec3 light_surf; vec3 h = normalize(l + v);
varying vec3 eye surf; vec3 t = normalize(tangent surf);
varying vec3 tangent surf; vec3 n = texture2D(normal sampler, texcoord).xyz *
varying vec4 shadow coords; 2 - 1;
uniform mat4 mvp, mv, light mvp; float n_dot 1 = dot(n, 1);
float n_dot v = dot(n, v);

void main() float n_dot h = dot(n, h);
{ float v_dot h = dot(v, h);

mat3 mv3 = mat3(mv); float cos2 alpha = n dot h * n dot h;

vec3 t = (mv3 * gl MultiTexCoordl.xyz); float tan2 alpha = (1 - cos2 alpha) / cos2 alpha;

vec3 n = (mv3 * gl Normal); float cos phi = dot(normalize(t.xy),

normalize(h.xy));
gl Position = mvp * gl Vertex;
float cos2 phi over m2

(cos_phi * cos phi) *

mat3 tbn = mat3(t, ward mm inv;
cross(n, t), float sin2 phi over n2 = (1 - cos _phi * cos phi) *
n ward nn_inv;
); D = exp(-tan2 alpha * (cos2 phi over m2 +
sin2 phi over n2));
vec3 vertex eye = vec3(mv * gl Vertex); Rs = 2 * schlick fresnel(n dot 1) * D *
shadow coords = light mvp * gl Vertex; inversesqrt(n_dot 1 * n dot v) * ward mn_inv;
Rs *= s;
texcoord = gl MultiTexCoord0.xy;
light surf = normalize((light eye - vertex eye) * tbn); gl_FragColor = max(0, n_dot 1) *
eye surf = normalize((-vertex eye) * tbn); step(0, n dot v) *
tangent _surf = gl MultiTexCoordl.xyz * tbn; vecd(material color.xyz *
} ((Rd * d + Rs) * Ii * shadow),

material color.w);

Open Source

Technology Software and Services Group i"tEl

Center

We need a compiler

e Not just parsing into a syntax tree
e\W/e want actual optimization

—= Open Source

| Technology Software and Services Group < i"tEl

» Center

5

Why it's easy

e Compiler techniques are extremely well known
elex, yacc handle some irritating parts

e Programs are short

e No such thing as memory

e No such thing as pointers

» Open Source

Technology Software and Services Group < i"tEl

Center

6

Why it's hard

eMost GPUs don't look like CPUs

evec4 as the basic datatype

e write masks on register destinations

esource swizzles (channel moves, replacement with constants)

eMany GPUs don't have things like “if" or “loop”

» Open Source

Technology Software and Services Group < i"tEl

Center

7

Write masks

e Optimization wants to know “where does this value come from?”
e Easy to answer with scalar values: the last thing to write to it
e\What is the answer for vectors?

varying vec2 texcoords;
uniform sampler2D tex;

void main()

{

vecd color = texture2D(tex, texcoords);
color.rgb = mix(color.rgb, vec3(0.633), 0.2);

gl FragColor = color;

}

» Open Source

8

Center

Technology Software and Services Group < i"tEl

There are two answers

e Deciding whether to treat vectors as vectors depends on GPU

= “AOS" is having one register with the whole vec4 in it.
reg0 x0 yO z0 'wO

regl x1 'yl z1 w1

reg2 x2 y2 z2 w2

reg3 x3 y3 z3 w3

= “SOA" is having 4 registers for a vec4.
reg0 |x0 |x1 x2 x3

regl yO y1 |y2 y3

reg2 |z0 z1 |z2 |z3

reg3 w0 w1l w2 w3

Open Source

Center

Technology Software and Services Group < inter

9

SOA vs AOS

@965 vertex is AOS

¢ 965 fragment is SOA
@915 is AOS

er200 is AOS
er300/r500 is AOS
er/00is AOS

env40 is AOS

env50 is SOA

envc is SOA

» Open Source

Technology

Center

Software and Services Group < intel

10

GPU limitations: Flow control

e GPUs don't do arbitrary flow control

e As of ~b6 years ago, GPUs did no flow control

o GLSL requires support for loops and if statements
e Tell the loop unroller to unroll everything

eReplace if..else..endif blocks with conditional moves

» Open Source

Technology Software and Services Group < i"tEl

Center

11

GPU limitations: Array access

e Some GPUs just don't do this
o GLSL requires that you do
e Allocate a bunch of registers, do conditional moves

= Does this sound familiar?

» Open Source

Technology Software and Services Group < i"tEl

Center

12

GPU limitations: Instruction count

e(0ld GPUs can often do just a few instructions
= 915: 64 ALU, 32 texturing
= 1200 vertex: 128 instructions
= 1300 vertex: 256 instructions

= 1500 vertex: 1024 instructions

e |f we fail at optimizing, it's worse than running slow

Open Source

Technology Software and Services Group < inter

Center

13

GPU limitations: registers and memory

e Until recently, no memory access at all
= 915: 16 temporary registers
= 1200 vertex: 12 temporary registers
= r300 vertex: 32 temporary registers
eRegqister allocation is a big deal
= |f you've got no memory access, no spilling allowed

= Even if you have memory access, spilling is expensive

— One shader spilling reduced Lightsmark performance 50% on 965

Open Source

Technology Software and Services Group < inter

Center

14

GLSL advantages

e Not |EEE floats

e Aimost no guarantees about your math.
= 1/1/x ==X
=20*x*05==x

= sin() might be sin(), might be a small-order polynomial.

» Open Source

Technology Software and Services Group < i"tEl

Center

)

Conclusion

e New compiler is in place in Mesa 7.9
= {915 got GLSL support

e New native codegen for 965 fragment shader in Mesa 7.10

= nexuiz 20% faster than in Mesa 7.8
eMost programs generate good-looking code
e Still work to do to optimize some programs
o Still need native codegen for other GPUs
e Still need native codegen for the CPU

» Open Source

Technology Software and Services Group < i"tEl

Center

16

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

